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Two nuclear potential functions that have the property of invariance to the operations of the permutation group of nuclei in 
molecules of the general formula MX,, n = 2-7, are described. Such potential functions allow equivalent isomers to have equal 
energies so that various statistical mechanical properties can be simply determined. The first contains two-center interactions 
between pairs of peripheral atoms and is defined by V = 1/2x.ak(Ar,,)2 + Em< Qr&-, ( n  = 1,2, ...). The second function contains 
three-center interactions and is defined by V = 1 /2~ .ak(Ar .a , ) z  + 1 / 2 ~ . a < 8 Q r ~ ( e . a p e  - IC)~. In these equations, k and Q are force 
constants, Arap is the change in the bond length between the X atom a and the central atom p, and e.arB is the angle subtended 
at the central atom by X atoms a and 0 for which the preferred value is IC. The force fields derived from these two potential 
functions have been used to determine the equilibrium and saddle-point geometries of the series of molecules MX,, n = 2-7. These 
fields predict equivalent equilibrium and saddle-point geometries for MX2 through MX6 but not for MX7. In this case, the first 
function gives a D5,, equilibrium geometry with two close-lying saddle-point geometries (the first of symmetry C,, a trigonal prism 
capped on a square face; the other C,,, an octahedron capped on a face). The second potential function gives an equilibrium 
geometry with symmetry C1 and the three geometries above as close-lying saddle-point ones. In addition, the dynamic behavior 
of MX5 and MX7 molecules follows as a natural consequence of these force fields in contrast to the relative rigidity of the others, 
which belong to the crystallographic point groups. 

Introduction 
The classical description of chemical phenomena is useful and 

accurate when the atoms and molecules involved are relatively 
heavy particles or when the temperature of the system is high; 
i.e., "classical mechanics emerges from quantum mechanics in 
the limit of large quantum numbers."' 

Various physical and chemical properties of a system can be 
determined by analysis of the trajectories generated by using 
classical molecular dynamics. The time correlation function 
formalism can provide important information such as the density 
of states in single molecules or clusters of  molecule^,^^^ the rate 
constants of chemical reactionse7 and isomerization dynamics,* 
and diffusion rates on crystalline metal surfaces or on metal 
c l u s t e r ~ . ~ J ~  

Of fundamental importance in the determination of these 
properties is the fact that the potential functions used in the 
equations of motion of the particles must reflect any symmetry 
properties inherent in the system. For example, in a study of the 
interconversion of isomers of molecules with the general formula 
MX, by a nondissociative, intramolecular pathway, all equivalent 
isomers must have the same potential energy; i.e., the nuclear 
potential energy must be invariant under the operations of the 
permutation group of the nuclei. 

The commonly used valence force fields often do not meet this 
Typically, the nuclear potential energy of a 

molecule is defined by 
2 v  = x : , ~ j k t j s t s j  

where the k,J values are force constants and the SI values are some 
set of displacement coordinates. If only bond stretches and bond 
angle deformations need be considered, then the S,  values are 
defined as 

SI = Are@ = raB - raBo 

for the bond stretches and 
Si = AB,,, = Oaa, - B,@,O 

for the bond angle deformations, where r,@ and rago are the 

*To whom correspondence should be addressed at Clemson University. 

instantaneous and equilibrium values, respectively, for the distance 
between atoms a and p and B,, and BaByo are the corresponding 
values for the angle subtended at  nucleus /3 by nuclei a and y. 
Most molecules have more than one equilibrium value for bond 
lengths or bond Angles. A trajectory that leads from one isomer 
to an equivalent one may experience a skewed potential simply 
because the algorithm that calculates the instantaneous forces does 
not recognize the need for interchange of the equilibrium reference 
values; i.e., the potential is not invariant to the interchange of 
nuclei. 

In this paper, we discuss two force fields that have this property 
of invariance and that can be applied to MX, molecules in which 
there are no nonbonding valence electrons, for example to PFS, 
SFs, etc. but not to TeF4, IFS, etc. The two fields are particularly 
appropriate to molecules in which there is substantial interaction 
between peripheral X atoms. We believe that these fields will 
prove to be useful for the sfmulation of molecular properties by 
using molecular dynamics. The first is a two-center force field 
derived from the static potential most recently discussed by 
Thompson and Bartell.ls The potential is defined by 

where k and Q are force constants, Ar,, = r,, - r,,,O'is the change 
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Figure 1. Total energy ETot for an MX5 molecule as a function of the 
coordinates q, and q2. The coordinate q, leads from the one D3h geometry 
over the barrier where at  the maximum the geometry is C,, down to 
another Djh geometry. The coordinate q2 preserves the C, symmetry of 
the saddle-point geometry and is orthogonal to ql .  Similar figures apply 
to other MX, molecules, as discussed in the text. 

in the equilibrium bond length raro between nucleus a and the 
central atom f i ,  and rus is the distance between the X nuclei a 
and 8. 

The second potential contains a three-center interaction and 
is defined by 

o! a<% 

where Oars is the angle subtended by X atoms a and ,8 at  the 
central atom and Q is the force constant. The angle ?r ( NO0) 
is the angle that any two ligand nuclei would prefer to subtend 
a t  the central nucleus. 

These two force fields have some important similarities and 
some equally important differences. Both fields will drive pairs 
of peripheral atoms to be diametrically opposite one another and 
thus to some extent would be expected to give similar geometries. 
On the other hand, while the angle OU,% can be expressed in terms 
of the internuclear distance rag, V(O) can be differentiated inde- 
pendently with respect to both Ar, and 8ar8. V(r) ,  however, 
cannot be differentiated independently with respect to both Arur 
and ras. Interplay between bond stretching and the optimum 
molecular geometry will occur, interplay that will clearly be a 
function of the value of the exponent n in eq 1 and that will result 
in as many different bond lengths as there are local symmetries 
in the MX, structure. The geometries obtained by use of the 
function V(O) (eq 2) will be independent of the value of rag0 and 
are thus valid for all MX, molecules. 

The two derived force fields do in fact give equivalent equi- 
librium and saddle-point geometries for MX, molecules with n 
= 2-6 but do not for n = 7. Previous discussions of the structure 
of MX, molecules have been based on static models for the po- 
tentials1618 or on quantum-mechanical considerations.lFZ1 There 
are some important differences between these results and ours. 

In the Computational Section, we show how the equilibrium 
and saddle-point geometries were determined. In the Results and 
Discussion, we analyze the implications of the results, especially 
as they relate to the chemical and physical properties of examples 
of MX, molecules. 
Computational Section 

Hamilton's equation of motion in a Cartesian basis was solved by 
fourth-order Runge-Kutta integration. Trajectories begin from an initial 
set of positions for the n + 1 particles of MX,, the only required equi- 
librium input being the bond lengths. Equilibrium geometries were 
obtained by allowing a trajectory to begin at  a randomly chosen set of 
coordinates with zero momenta for all particles and to continue under 
the influence of the force field for a specified number of integration steps 
(usually about 20 steps with a time increment of 25 au/step) after which 
the momenta of the particles were reset to zero and the new trajectory 
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was followed. This is shown schematically in Figure 1 in which the total 
vibrational energy for an MX, molecule is plotted as a function of two 
displacement coordinates, q, and q2. The coordinate q, corresponds to 
the reaction coordinate that leads from the D,, geometry through a C,, 
intermediate to another D3h geometry. Choose an initial geometry not 
in the plane ETot, q2 (ql = 0). Since all components of momenta are set 
equal to zero, the total energy is equal to the potential energy and has 
a value uo. The system is then moved by the force field away from the 
surface and reaches the position a, in 20 integration steps. At al, the 
kinetic energy is no longer zero. Reseting all components of momenta 
to zero again drops the total energy from a, away from the surface to 
a2 back on the surface, and the process is repeated until the system 
reaches the bottom of the well. Because of the invariant nature of the 
two potential functions, it does not matter which well is reached. Be- 
tween 2000 and 8000 integration steps usually were needed to bring the 
system to the equilibrium geometry, a t  which point the kinetic energy of 
the system remains zero and the particles experience no force. 

Saddle-point geometries were obtained by the same method except 
that the initial geometry must be chosen such that the forces cause the 
trajectories to alight on the saddle-points. This is accomplished by 
choosing an initial geometry that has the same point symmetry as does 
the saddle-point geometry. Then there is no component of the force field 
in the direction of the reaction coordinate that leads from the saddle-point 
geometry to the equilibrium geometry. For example, the initial choice 
for the C,  saddle-point geometry of MX, is a square pyramid with the 
M nucleus in its base. As shown in Figure 1, this might correspond to 
a total energy of bo. The force field acting on this geometry has no 
component in the direction q,, and thus during cooling, the only minimum 
that can be reached is the one in the ETot, q2 (ql = 0) plane. 

These processes for finding the equilibrium and saddle-point geome- 
tries are analogous to cooling or annealing trajectories with a friction 
constant that is determined by the number of steps between momentum 
resets. Any higher energy minima will not necessarily be detected by this 
method. 

The computer code that was used to perform these calculations is 
written in double-precision Fortran and has been described earlier.22 The 
algorithm has been tested by calculating the density of states versus 
frequencies of vibration by Fourier transforming trajectory velocity data 
and then comparing the frequencies against the results of a separate 
normal-coordinate analysis calculation and the number of degrees of 
freedom with the group-theoretic result. The calculations were run on 
a Digital Vax 8650 machine configured with a Digital MicroVax I1 
computer. 

Results and Discussion 
Although MX2 and MX, molecules have only one quantum- 

mechanical isomer each, we begin by comparing their equilibrium 
geometries that are predicted by the two force fields derived from 
eq 1 and 2. These two force fields are given by 

derived from eq 1, and 

(4) 

derived from eq 2, where xi,, is the ith Cartesian coordinate of 
nucleus 6. We refer to these fields as field I and field 11, re- 
spectively. In eq 3, the potential energy cannot be minimized 
separately with respect to variation in bond length and variation 
in interligand distance because the second distance is an implicit 
function of the first. In eq 4, however, the potential energy can 
be minimized separately with respect to variations in bond length 
and bond angle. This leads to a quantitative difference in the 
equilibrium and saddle-point geometries determined by these two 
fields. In geometries generated by field 11, all bond lengths equal 
exactly the input equilibrium bond lengths, whereas, in those of 
field I, interligand repulsion can be alleviated by internal energy 
conversion with the result that all bonds are slightly longer than 
the input equilibrium bond lengths, making the total energy of 
the system lower. 

(22) Geldard, J.  F.; McDowell, H. K. Spectrochim. Acto, Purr A 1987, 43A, 
439. 
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Table 1. Energies and Bond Lengths of the Equilibrium and 
Saddle-Point Geometries of MX, Molecules Using the l / r  Potential 
Function 

Table 11. Energies of the Equilibrium and Saddle-Point Geometries 
of MX, Molecules Using the (e - T )  Potential 

en erg y , energy, 
bond energy, hartrees species (sym) hartrees species (sym) hartrees 

species (sym) length,” A Ar l / r  tot. MX2 0.0 MX6 (oh) 10.1487 
1,1276 MX6 (D3h) 10.2640 

MX6 (c5u) 10.4383 
MX4 (Td) 3.1162 MX6 (D6h) 11.2764 

1.6065 0.0030 0.2022 0.2052 MX3 
1.6605 0.0205 0.6678 0.6983 
1.7107 0.0615 1.3957 1.4571 
1.7161 
1.7630 (2) 
1.7590 (3) 
b 
1.7708 
1.8052 
1.8073 
1.7982 (1) 
1.8127 (5) 
1.8238 
1.8433 (2) 
1.8523 (5) 
b 
b 
b 
b 
1.8360 (1) 
1.8624 (6) 
1.8748 

0.0659 
0.1361 

0.1365 
0.1503 
0.2441 
0.2484 
0.2544 

0.2825 
0.3977 

0.3979 
0.3979 
0.4079 
0.4081 
0.4229 

0.4695 

1.4497 
2.3897 

2.3927 
2.5255 
3.5944 
3.6299 
3.6793 

3.9065 
5.0772 

5.0791 
5.0789 
5.1526 
5.1542 
5.2595 

5.5918 

1.5156 
2.5259 

2.5292 
2.6758 
3.8384 
3.8783 
3.9338 

4.1890 
5.4749 

5.4770 
5.4767 
5.5605 
5.5623 
5.6824 

6.0613 

“The number of bonds of a given length is shown in parentheses. 
*Structural details shown in Figure 1. 

Moreover, in those systems having two or more different kinds 
of bonds because of symmetry considerations, field I generates 
two or more different bond lengths, while field I1 always generates 
the one bond length. We refer to the energy associated with the 
first term on the right hand side of eq 1 as the Ar energy and to 
that associated with the second term as the 1 / r  energy. These 
two energies are shown with the total potential energy in Table 
I. In the analysis that follows, we use the values k = 5.90 
mdyn/A, Q = 1.228 (units of md A“+] or mdyn/A for eq 1 and 
2, respectively)?2 and ro = 1.56 G o r  the input equilibrium bond 
length in all MX,.23 The values of k and of Q are those calculated 
from the IR and Raman spectra of SF6. Other values of the two 
constants could be chosen, but the values used here are repre- 
sentative for molecules such as PF5, SF,, IF7, etc. Q is a normal 
force constant in eq 2 but not in eq 1. The second derivative of 
eq 1 is dependent on the value of the exponent n and the values 
of the rap in the equilibrium configuration. 

For MX2 and MX3, both fields give the expected linear and 
planar triangular geometries, respectively. The bond lengths and 
potential energies generated by both fields are given in Tables 
I and 11. 

MX,. The MX4 molecule exhibits the existence of quantum- 
mechanical isomers and a saddle-point geometry. The number 
of quantum-mechanical isomers of a given molecular geometry 
is a subset of the permutations on the numbering of the nuclei 
such that each member cannot be reached from another by a real 
rotation. The number of saddle-point geometries is given by the 
number of ways one can position the particles such that the net 
force on each is zero minus the number of minima. MX4 has an 
equilibrium geometry with two quantum-mechanical isomers and 
one saddle-point geometry with three quantum-mechanical iso- 
mers. Both fields predict the equilibrium and saddle-point ge- 
ometries to have Td and D4h symmetries, respectively. With field 
I, the Ar, 1 /r, and total energies are all lower for the Td geometry 
(see Table I) .  Each isomer of the equilibrium Td geometry is 
connected to all three isomers of the saddle-point D4h geometry 
by a set of coordinates analogous to q,  in Figure 1. 

There is the possibility that the saddle-point geometry does not 
sit atop a maximum in the multidimensional curve that connects 

(23) Tables of Interatomic Distances and Configurations in Molecules and 
Ions Special Publication No. 18; The Chemical Society: London, 1956; 
Supplement, p 1059. 

MX, (C!) 15.2221 MX4 (D4h) 3.3692 
MX5 (&) 6.2020 MX; (DiL) 15.2231 
MX5 (C4u) 6.2147 MX7 (C2,[1,4,2]) 15.2248 
MX5 (D5h) 6.7658 MX7 (C3,[1,3,3]~) 15.2253 

MX, (C7u[1,2,41) 15.4468 
MX7 (ciVii,3,3je) 15.4509 
MX7 (c6v) 15.7896 
MX7 (D7h) 16.9 146 

one geometry with another (as shown in Figure 1) but rather sits 
in a shallow depression with two maxima to either side of it; Le., 
there are other nonsymmetrical geometries that are also saddle- 
point geometries. This is easily shown not to be correct by placing 
the system a t  the symmetric saddle-pint geometry (in this case 
the D4h one), assigning a minute amount of momentum to one 
of the particles, and following the course of the trajectory. In this 
case and in all others, the system slides down the potential curve 
to the equilibrium configuration. 

This is equivalent to a numerical determination of coordinates 
like q1 of Figure 1. The method circumvents the problem of having 
to determine the transformation from the Cartesian basis, where 
the derivatives can be calculated, to the q1 basis function where 
the exact functional form is unkown but value of which could be 
determined numerically point by point. 

MX5. Much has been written about MX5 molecules since 
Berry’s paper on quantum-mechanical tunneling in PFS and 
A s F ~ . ~ ~ - ~ ~  In addition to the equilibrium geometry (20 isomers) 
and the C, saddle-pint geometries (30 isomers), there is another 
saddlepoint geometry (24 isomers) with symmetry Dsh (see Tables 
I and 11). The details of the structure of the C, geometry defined 
by fields I and I1 are given in Figure 2. Note that field I generates 
two bond lengths for both the D3h and C.,, geometries, with the 
axial bonds longer than the equatorial in the former but with the 
single axial bond shorter in the latter. The transverse radial bond 
angle in the C, geometry is 152’ (field I). This is an important 
result because it means that, in pseudorotations, the fact that the 
axial and equatorial pairs do not meet halfway (1 50’) but meet 
a t  152O (more exactly a t  151.8’) is not the result of any quan- 
tum-mechanical property of the central atom but is a result of 
geometry.26 The barrier heights resulting from fields I and I1 
are 2.07 and 7.96 kcal/mol, respectively. m. This is another molecule for which a great deal has been 
written on the subject of its isomer inter~onversions.~~-~~ Besides 
the equilibrium geometry (30 isomers), there are three saddle-point 
geometries with symmetries D3h (120 isomers), Cs, (144 isomers), 
and Dsh (120 isomers), with the last two not chemically connected 
to the first two (see Tables I and 11). As can be steen in Figure 
1, both field I and field I1 elongate the D3* structure axially. 
Counterrotation of the opposite faces of an octahedron without 
axial elongation gives bond angles of 90, 70.5, and 131.8’ for the 
three angles shown in the figure. This suggests that in tris(bi- 
dentate)metal complexes, nondissociative intramolecular rear- 
rangement might occur through a C2, trigonal-prismatic inter- 
mediate, if the ligands prefer a larger bite angle (el2 in Figure 
l), or through a DSh one, if a smaller one is preferred (el4 in Figure 
1). However, both bite angles are less than the original angle of 

(24) Berry, R. S. J. Chem. Phys. 1960, 32, 933. 
(25) Berry, R. S .  Rev. Mod. Phys. 1960, 32, 447. 
(26) Hoskin, L. C.; Lord, R. C. J. Chem. Phys. 1967, 46, 2402. 
(27) Ray, P.; Dutt, N. K. J. Indian Chem. SOC. 1943, 20, 81. 
(28) Bailar, J. C., Jr. J. Inorg. Nuel. Chem. 1958, 8,  165. 
(29) Springer, C. S., Jr.; Severs, R. E. Inorg. Chem. 1967, 6, 852. 
(30) Brady, J. E. Inorg. Chem. 1969, 8, 1208. 
(31) Serpone, N.; Bickley, D. G. Prog. Inorg. Chem. 1972, 17, 391 
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e4 

3 t '  

t '  

Potential Function 

1 /r e-n 
(Field I) (Field 11) 

'I 1 l " I l  

1 . 7 5 6 6  1 2 1 0 5 . '  
1 . 7 6 1 9  2 3 87.' 

2 4 1 5 2 . '  

1 , 8 0 7 3  1 2 85.' 
1 4 77.0 
1 5 134 . '  

1 . 8 5 9 8  1 2 69.' 
1 . 8 5 1 1  1 5 1 3 5 . O  

2 5 66.O 
2 6 1 2 6 . O  
5 6 76.O 

1 . 8 5 3 8  2 3 1 0 8 . 0  

1 1 . 8 5 3 0  1 2 73.' 
2 1 . 6 4 9 5  1 5 1 2 9 . '  
5 1 . 8 4 9 1  2 3 112 . '  

2 6 158 .O 
5 6 85.O 

2 5 79.0 

1 1 . 8 5 0 2  1 2 61.' 
2 1 . 8 4 8 6  1 6 144 . '  
6 1 . 8 5 2 1  2 3 96.O 

2 4 161 .O 

2 6 76.O 

6 7 72.O 

2 5 81.0 

2 7 1 2 0 . 0  

1 1 . 8 5 2 2  1 2 65.' 
2 1 . 8 5 7 8  1 4 1 1 8 . '  
4 1 . 8 5 1 4  2 3 130.O 

2 4 72.' 
2 6 134.O 
4 5 87.O 
4 6 124.O 
4 7 67.' 

e1 1 

1 0 5 . '  
86.: 

1 5 1 .  

87.0 
71.' 

1 3 2 . O  

69.O 
1 3 3 . O  

64.O 
1 2 6 . O  

1 0 8  .o 

79.0 

73. O 

1 2 8 . 0  
1 1 2 . 0  

79.0 
1 5 8 . O  

86. 

81.0 
144.O 

97.0 
162.O 
60.O 
75.0 

1 2 0 . 0  
72.O 

64.O 
1 1 8 . 0  
1 2 8 . 0  

74.0 

90.0 
132 .O 

124 . '  
64.O 

MX7 P A 4 1  (C 2 v  ) 

Figure 2. Saddle-point geometries for MX, molecules using the l/r and 
(e - r) potential functions showing the bond lengths in A and the bond 
angles in degrees. For the (e - ir) potential function, all bond lengths 
are 1.56 A. 

90° in the octahedral configuration. 
MX,. The last member of this series also has been the subject 

of much t h e ~ r e t i c a l ' ~ * ~ ~ - ~ ~  and experimental discussion. Besides 

(32) Claxton, T. A,; Benson, G. C. Con. J.  Chem. 1966, 44, 157. 
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Table HI. Energies of the Equilibrium and Saddle-Point Geometries 
of MX, Using the l/P Potential 

energy, hartrees 
n = 1 0  n=2' n = 3 0  n=4a n=4C sYm 

DS h 5.4749 1.3118 0.3364 8.7770 0.7317 
Cb[1,4,2] 5.4767 1.3129 0.3368 8.7767 0.7326 
Cj,[1,3,3]~ 5.4770 1.3131 0.3369 8.7790 0.7328 
Cb[1,2,4] 5.5605 1.3732 0.3693 10.2552 
Cj,[1,3,3]e 5.5623 1.3747 0.3702 10.3055 

O k  = 5.90 mdyn/A; Q = 1.228 mdyn A"''. *Same constants but 
energy multiplied by 100. C k  = 5.90 mdyn/A; Q = 12.28 mdyn AS. 

-25 2 1 2  1 3 90.O 84.O 2 2 4 5 1 4 3 . 0  1 4 5 . 0  3 4 7 5 96.O 72.O 

1 4 1 0 0 . 0  2 6 74.O 4 6 1 4 1 . '  
1 5 83.0 2 7 88.0 4 7 82.0 
1 6 93.O 3 4 72.0 5 6 73.' 
1 7 1 7 8 . O  3 5 1 3 9 . 0  5 7 99.' 
2 3 73.O 3 6 1 4 7 . 0  6 7 86.O i7 - -  

Figure 3. Lowest energy geometry of MX, using the (e - 7 )  potential 
function. Shown are the bond angles in degrees subtended at the central 
atom by the ij pairs; the bond lengths are all equal to the input value. 

the MX7 molecules, examples of which are IF?6 and ReF7,37 there 
is the question of the structure of MX6 molecules that have a 
nonbonding pair of electrons in their valence shell. Examples of 
this type of molecule are XeF6Z0s38*39 and the anions SbX63- and 
T e G 3  (X = C1, Br, or I).4o The principal question that has been 
raised by all these studies is whether or not the equilibrium ge- 
ometry of MX, has D5h symmetry. Since fields I and I1 give 
different equilibrium geometries, we discuss the two cases sepa- 
rately. 

Field I. The MX, arrangement has besides the DSh equilibrium 
geometry (504 isomers) six saddle-point geometries which have 
(in order of increasing energy) symmetries C,[ 1,4,2] (2520 iso- 
mers), C3,[1,3,3]s (1680 isomers), C2,[1,2,4] (2520 isomers), 
C3,[1,3,3]e (1680 isomers), c6, (840 isomers), and D7,, (720 
isomers). The details of structure of these saddle-point geometries 
are shown in Figure 2. The first can be considered to be a trigonal 
prism capped on a square face, the second an octahedron capped 
on a face, the third a trigonal prism capped on an edge, and the 
fourth a trigonal prism capped on a triangular face. The fifth 
is simply a capped regular hexagon, and the sixth is a regular 
heptagon (these two are not shown in the figure). The designations 
in the square brackets show the clustering of particles in planes 
down the principal rotation axis and whether one set is staggered 
(s) or eclipsed (e) by another. The energies of these geometries 
are given in Table I. The energy separations between the equi- 
librium geometry and the first two saddle-point geometries are 
1.129 and 1.317 kcal/mol, respectively. Even with relatively stiff 
force constants, an MX7 molecule is a very dynamic system, with 
three easily accessible geometries. 

Earlier studies using static force showed that the order 
of the energies of the equilibrium and saddle-point geometries is 
dependent on the value of n in eq 1, with a change in the order 
a t  n = 3.5 from DSh to Cz. The dynamic force field can be made 
to imitate the static by increasing the magnitude of k relative to 
Q. This happens automatically as the value of n is increased, and 
as is shown in Table 111, the order of the energies of the D5h and 

Muettertics, E. L.; Gussenberger, L. J .  J .  Am. Chem. SOC. 1974, 96, 
1748. 
Adams, W .  J.; Thompson, H. B.; Bartell, L. S.  J .  Chem. Phys. 1970, 
53, 4040. 
Bartell, L. S.; Rothman, M. J.; Gavezotti, A. J .  Chem. Phys. 1982, 76, 
4136. 
Lord, R. C.; Lynch, M. A., Jr.; Schumb, W. C.; Slowinski, E. J., Jr. J .  
Am. Chem. SOC. 1950, 72, 522. 
Jacob, E. J.; Bartell, L. S. J .  Chem. Phys. 1970, 53, 2231, 2235. 
Gavin, R. M., Jr.; Bartell, L. S.  J .  Chem. Phys. 1968, 48, 2460, 2466. 
Pitzer, K. S.; Bernstein, L. S. J .  Chem. Phys. 1975, 63, 3849. 
Adams, C .  J.; Downs, A. J. J .  Chem. SOC. D 1970, 1699. 
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C,[ 1,4,2] is reversed between n = 3 and n = 4. The bond lengths 
are all about 1.58 A, and the particles lie close to the sphere that 
they are constrained to be on in the statics calculations. If the 
value of Q is increased from,1.228 to 12.28, then the bond lengths 
are longer (about 1.7 A) and the D5h structure is again the lowest 
energy geometry. Thus, the dynamics results include the static. 

Field 11. The equilibrium geometry is now C1 (5040 isomers) 
with seven saddle-point geometries (the six from above plus the 
equilibrium geometry from above). The equilibrium geometry 
is shown in Figure 3, and some of the saddle-point geometries are 
shown in Figure 2. The energies associated with all geometries 
are shown in Table 11. Clearly, field I1 creates a fluxional 
nightmare. Molecules for which field I1 gives an accurate rep- 
resentation of the repulsive potential would exhibit a ground-state 
dipole moment.41 
Conclusions 

Fields I and I1 provide insight into the preferred geometries 
of MX, molecules. Field I is a more realistic field because it allows 
as many different bond lengths as there are local symmetries in 
a given MX, structure. Field I1 on the other hand generates 
geometries that are independent of any bond length assigned to 
a MX, structure and thus provides a standard for geometry in 

(41) Kaiir, E. W.; Muenter, J. S.; Klemperer, W.; Falconer, W. E. J .  Chem. 
Phys. 1970, 53, 5 3 .  

molecules where all pairs of the peripheral atoms try to be 
diametrically opposite one another. For MX4 and MX6 molecules, 
the energies of the equilibrium geometries are well below those 
of the nearest saddle-point ones, yet for MXS and MX, molecules, 
using the same force constants, there are saddle-point geometries 
that are easily accessible from the equilibrium geometry. These 
results agree with experimental results and imply that it is the 
repulsive interactions between the peripheral atoms and the in- 
trinsic geometry of the molecules that determine their dynamic 
behavior. In addition, the details of the geometries are also in 
agreement with the results of quantum-mechanical  calculation^:^'^^^ 
in MXS, the axial bonds are longer than the equatorial ones, 
whereas in MX, they are shorter. The dynamical calculations 
can be made to imitate statics calculations by increasing the 
magnitude of the bond stretch force constant relative to the force 
constant Q. All isomers of a given geometry have the same 
potential energy with the result that derived statistical mechanical 
properties will have no bias. 

In future work, we will use these simple potentials to study the 
details of isomer interconversion in MX, molecules by scaling the 
force constants to give approximately correct vibrational fre- 
quencies and barrier heights. 
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A vibronic coupling model, including spin-orbit interactions, is presented and used to explain the sign and magnitude of observed 
Jahn-Teller distortions of Cu2+ and Ni2+ ions in tetrahedral coordination. It is demonstrated that the Jahn-Teller coupling is 
rather large for Cu2+ (2T2 ground state) and generally dominates over steric ligand, geometric packing, or spin-orbit effects, leading 
to compressed tetrahedra with DU symmetry. In contrast Ni2+ (3T, ground state) undergoes much smaller Jahn-Teller interactions, 
and static distortions (elongated Du geometry) are not always expected. The lowering of the vibronic constants for Ni2+ as 
compared to Cu2+ is mainly due to the configuration interaction between the 3Tl ground and excited states. The vibronic coupling 
analysis is based on spectroscopic and structural results of “Cu04”, “CuF4”, and “io4” chromophores in various host structures. 
A quantitative discussion of the Jahn-Teller stabilization energies for the minima in the T @ (e + t2) adiabatic potential surface 
is given. The influence of elastic interactions between the tetrahedra (cooperative Jahn-Teller effect) on the ground-state splitting 
and on the extent of the local Jahn-Teller distortion is also considered. An essential energy contribution to the term splittings 
may arise from elastic interactions of this kind in structures with widely interconnected polyhedra. 

Introduction 
Cu2+ and Ni2+ ions in tetrahedral coordination have orbitally 

degenerate ground states 2T2 and TI, respectively and are expected 
to be subject to Jahn-Teller forces.’ The induced symmetry 
lowering and term splittings due to the minima of the adiabatic 
Jahn-Teller (JT) surface can be detected by spectroscopic and 
structural studies. Whether a static or dynamic Jahn-Teller effect 
prevails depends on the depth of the various minima of the adi- 
abatic potential surface (APS). While stable minima are known 
to arise only from second-order contributions for Cut+ in octa- 
hedral coordination, in tetrahedral geometry such points are al- 
ready produced by first-order terms. Static Jahn-Teller distortions 
have been observed in the case of CUC~,~- entities and are in- 
terpreted within the angular overlap model (AOM).2 Unlike Cu2+ 

the structural and spectral data on tetrahedral NiZ+ are scarce 
because this ion only reluctantly adopts this ~oordination.~ The 
incorporation of Cu2+ and also Ni2+ into the tetrahedral sites of 
the spinel structure is possible, however, if the octahedral sites 
are blocked by Cr3+.3 

The aim of the present paper is to explain the sign and the 
magnitude of the static Jahn-Teller distortions in spinels with the 
constitution [MXZnl,]‘[Cr2]W4 (M = Cuz+, Ni2+; o = octahedral; 
t = tetrahedral) on the basis of spectral and structural data. We 
will first present a vibronic coupling model-including spin-orbit 
coupling-which allows us to describe the Jahn-Teller distortions 
of tetrahedral Cu2+ and Ni2+ complexes. Then we will analyze 
spectral and structural data of M 0 4  chromophores ( M  = NiZ+, 
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